&> G0Domonkey

Write code. Catch bananas. Save the world.

TALES
PART ONE

Lesson Plans
|-12

BANANA TALES

PART ONE

TABLE OF CONTENTS

TADIE Of CONLENTS.......ccvvuueiiiienriiiiienriisieriiiirisniiisiseniiississnsnes 1
(=204 o IR o L (=2 2
=X T B R [o o [1 o o Lo TR 3
LeSSON 2 - SEQUENCING ...ccuuveuuiieuriiinniiiniiiseiiisenissnsisssssossnsissssssssssssssssssssssssassssnsssssassssnssssns 7
=T T I R] P 10
LeSSON 4 - FOI LOOPSc.ceuveeireiieiiniinsiniiensssisessasinsssssssssssssssossassassssssssssssssssssassassassssssssssssns 14
LESSON 5 = RANQGE ...c.uveuveireeirriiiriiiriiiriiriiirriinriisseisseissaissasssasssssssssssssssssssssssssssssssssssssssasssns 17
(=T T I RV T 12 o L= 21
LESSON 7 = If eueeeneeeeiiieiiiiiiiiiiiiieiiiseinisiesissessessnsssssssssssssssssessnsssssssessnssssssssssassssnssssnsssssanans 24
LESSON 8 = IfEISE c.eeeeeeeeeeeserreereeeeeseeesesssssssssssssssssssssssssessssssssssssssssssssssssssssssnsnsnssssssssssnns 28
LESSON 9 - WHRIIE LOOPS ...cc.ueeeeneeeenereuneeeenrerenereenerensseeensesensssenssessssessnsssenssessnssssnssssnnsessnsans 33
Lesson 10 - BOOIEAN OPEIALOrS 1euueeeeeereeneeeeereeensereesesensssssosessnsessssssssassssnssssnsssssnsens 39
Lesson 11 - BoOIean OPErators 2cceuveeecerveenisnnensssssssessssssssssssssssssssssssssssssssssssssnssssss 43
LESSON 12 - FUNCLIONScceuueuireenriiirieeiiiiiiiniiinneesiiissensiiissessiisssssiissssssssssesssssemesssssssssssssns 47

COPYRIGHT © 2023 BY CODEMONKEY STUDIOS LTD.
ALL RIGHTS RESERVED. THIS BOOK OR ANY PORTION THEREOF
MAY NOT BE REPRODUCED OR USED IN ANY MANNER WHATSOEVER
WITHOUT THE EXPRESS WRITTEN PERMISSION OF THE PUBLISHER

BANANA TALES

PART ONE

GETTING STARTED

Thank you for choosing Banana Tales to teach your students how to code in
Python. With gamified challenges, a real programming interface and an
engaging user experience, Banana Tales is a great way to teach your students
Python coding. The following document includes the lesson plans for Part
One of Banana Tales. These lesson plans consist of two complementary
documents. This file includes the lesson plans that are intended for use by the
teacher in organizing their lessons and supporting students as they work
through the challenges and learn the syntax of Python. The Classroom Slides
(located under Banana Tale's course resources) are a separate slide deck that
contains visuals and code samples referenced in the lesson plans. These Slides
are formatted to present to students on a TV or projector screen.

Although previous coding experience will help in teaching this course, these
lesson plans, in conjunction with the correlating Classroom Slides, will help
teachers without previous coding experience to successfully teach Banana
Tales. Each lesson is made up of 3 parts, an introduction, playtime, and
debriefing, and is designed to be 45 minutes long. Each section is further
divided into the amount of time it takes to complete.

For information regarding setting up a class, please read A Beginner's Guide
to CodeMonkey. The guide can be found here or in the Teacher's Resources
Menu on your homepage. Please feel free to email us at
Info@codemonkey.com for any questions you may have along the way.

Have fun!

The CodeMonkey Team

https://app.codemonkey.com/resources/courses/banana_tales_part_1
https://s3-us-west-2.amazonaws.com/cm-docs/BeginnersGuide.pdf
mailto:info@codemonkey.com

BANANA TALES

PART ONE

LESSON 1 - INTRODUCTION
CSTA STANDARDS

Elementary (3 - 5) Middle (6 - 8) High (9 - 12)
1B-AP-10 2-AP-12 3A-AP-15
1B-AP-15 2-AP-17 3B-AP-21

OBJECTIVES

e Define object and property

e Add objects to the play area when necessary

e Modify properties of game objects
Complete challenges1-10

[OMPON ENTS

PYTHON
e Accessing and modifying object properties
PLATFORM

e Feeding the banana to the monkey

¢ Ul elements, including the Run and Rewind buttons and the drag and drop
area

Giraffe and Snake objects

INIRODUU 10N - 15 MIN

DISCUSSION -3 MIN

Ask students about their prior experiences with coding. If no students have
experience coding give them an opportunity to share other types of projects that
they have created with computers: pictures, presentations, web pages, etc. For
students who have done some coding, ask them what language or languages
they did their coding in. Explain that in this course we will be using a language
called Python.

ACTIVITY -10 MIN

For this activity you will need to have room for a student to walk in a straight line
for 15 to 20 feet (5 to 6 meters). You will also need a couple of easily movable

BANANA TALES

PART ONE

obstacles that can be used to block this path. In many classrooms it may be
possible to use student desks as long as they are not too heavy or unwieldy.
Otherwise you can use cardboard boxes or something similar. Finally, you will
need some sort of little knick-knack or token for one student to deliver to another.
A banana (real or fake) is ideal, but it can really be anything.

For the first version of the activity, you will need three students to participate. One
will be the Deliverer, one will be the Receiver,and one will be the Programmer.
The Deliverer and Receiver should stand at opposite ends of the cleared path.
When the Programmer tells the Deliverer to go, the Deliverer should walk in a
straight line towards the Receiver. When the Deliverer reaches the Receiver, he or
she should give them the banana (or whatever you used).

Now change things up. Let the students position two or three of the obstacles in
the path. Position the Deliverer and Receiver as before, and have the
Programmer say go once more. When the Deliverer encounters an obstacle, they
should simply stop rather than trying to steam-roller over it and possibly cause an
accident.

Repeat the exercise one last time. Assign a student as a Mover for each obstacle.
This time the Programmer gets to give the Movers instructions to clear the path
before they tell the Deliverer to start. For each instruction, they should address
the Mover by name and tell them what to do. For example, “Chris, please move
your box back three feet (one meter).” This exercise is not intended as any great
puzzle for the Programmer to solve, so with any reasonable set of instructions he
or she should be able to clear the path and allow the Deliverer to reach the
Receiver once more.

EXPLANATION -2 MIN

Explain to students that the activity they just completed is a model for how the
challenges in Banana Tales work. In every challenge the goal is to get the banana
to the baby monkey, but the little car carrying the banana needs a clear path to
do so. As programmers, the students will write code not to control the car, but to
control the environment to make sure that the path between the car and the
baby monkey is clear and safe.

PLAYTIME - 25 MIN

LOG-IN INFORMATION - 2 MIN
Go to <www.codemonkey.com>.

Instruct your class on how to log in to their CodeMonkey accounts. If your
students use usernames and passwords to login, make sure they store their
usernames and passwords where they can easily access them in the future.
Optionally, you may provide students with log-in cards and instruct them to store
the cards in a safe place.

If a student forgets their password, you can reset it by visiting the classroom
dashboard, locating the student's username, and clicking on the edit button
which will appear if you hover over the username.

BANANA TALES

PART ONE

PLAYTIME (1) - 3 MIN

Once students have navigated to Banana Tales Part 1, Challenge 1 and watched
the intro video, ask them to take a moment to familiarize themselves with the
interface. The game world is represented on the right and the area for writing
code is on the left. The console and level_setup.py tabs will be introduced later; for
the moment students only need to concern themselves with the solution.py tab
where they can write their code and the Run! button that will cause it to execute.
For Challenge 1they don't even need to do that. All they need to do is click the car
and it will start driving towards the monkey. Since the path is clear, that results in
a banana for the monkey and a three-star solution for the player.

Things get a little more interesting in Challenge 2. Have students try the same
thing that worked in the last challenge - just clicking on the car to send it on its
way - and see what happens. Since that doesn’t solve the challenge, they will
need to click on the Rewind button to try again. This time it is actually necessary
to use some code to solve the challenge. The correct code has been provided, but
students will need to click the Run! button to make it execute. Aha! Now the car
has a safe path to the monkey, but it is still necessary to click on the car to send it
on its way and win the challenge. Make sure students understand that for every
challenge from here on out they will always have to run their code first and then
click the car to test their solution and end the challenge.

EXPLANATION - 5 MIN

So, what is the code in Challenge 2 doing? The seemingly very simple statement
giraffe.height = 6 actually involves a couple of pretty heavy ideas in computer
science, so you want to break this explanation down very carefully for your
students.

In this statement, giraffe represents an object. Object has a special meaning in
computer science. The following definition is a bit oversimplified, but it will do for
right now. An object is a collection of code and data intended to represent
something. In this case, the giraffe object represents, well, a giraffe, or at least a
version of a giraffe that works in the Banana Tales game world. The giraffe
object includes code that does things like telling the car not to fall when it drives
over the giraffe’s head and data like the image files used to draw the giraffe on
the screen.

Most of the code and data that makes up the giraffe object is hidden away
inside the CodeMonkey platform where we can't get to it, but we do have access
to part of it. That's where the .height comes in. height is a property of the giraffe
object. A property of an object is a piece of its data that we, the programmers,
have access to. In this case, the height property of the giraffe object represents
the height of the giraffe we see on screen. The statement giraffe.height = 6
says to change the height of the giraffe to 6 units, and when it executes, we can
see the change happen.

The dot between giraffe and height is important. The name of the object goes
before the dot, the name of the property goes after the dot. The analogy is not
perfect, but the dot in Python works a lot like the 's for possessives in English.
giraffe.height essentially means “giraffe’'s height”.

PLAYTIME (2) - 15 MIN

BANANA TALES

PART ONE

At this point students should continue working through the challenges on their
own. For this lesson, they need to complete Challenges1-10 and get three stars
on each.

. For Challenges 5, 8, and 9, students will need to drag extra giraffes and/or
snakes onto the screen to solve the challenge. It is easy to miss that these are
available if you are not looking for them. When there are draggable objects
available, the bank for them will appear in the top middle of the screen.

e The snake object, introduced in Challenge 6, has a 1length property instead of
height and stretches horizontally instead of vertically but otherwise works
very much like the giraffe.

e For Challenge 9, it is possible to solve by using the snake or the giraffes, or a
combination of both. Encourage students to try and find all three solutions.

e In challenges like challenge 9 where there are multiple objects of the same
type, they will have names like giraffe 1, giraffe_ 2, etc. Students can see
these names by hovering their mouse over the object on screen, and if they
click on the object its name will be automatically be copied into the code
window.

DEBRIEF

EXPLORATION - 5 MIN

Have the students replay Challenge 9. Ask them to experiment and try to answer
the following questions.

e What is the maximum and minimum height of a giraffe?

¢ What is the maximum and minimum length of a snake?

¢ What happens when a giraffe is too tall for the space it isin?
e Do giraffes have a length?

e Do snakes have a height?

Note that investigating these questions will generally result in code that
produces an error message and/or that fails the challenge. Make sure that
students understand that that is okay; Banana Tales is a tool to help us learn
about coding in Python, and sometimes you can learn more from an error than a
success.

BANANA TALES

PART ONE

LESSON / - SEQUENCING
CSTA STANDARDS

Elementary (3 - 5) Middle (6 - 8) High (9 - 12)
1B-AP-08 3B-AP-T1
2-AP-17
1B-AP-15 3B-AP-21

OBJECTIVES

¢ Define debugging
e Explain why the order of execution of the steps in a program matters
e Review concepts from previous lesson

Complete challenges 11 - 18

COMPONENTS

PYTHON

e Seqguential execution

INTRODUCTION - 10 MIN

ACTIVITY - 7 MIN

For this activity you will need a closeable bottle filled with some kind of beverage.
The following instructions will refer to water, but you can use whatever works.
You also need several cups.

Present the students with the bottle and a cup and tell them that we want to
come up with a step by step procedure for drinking the water from the cup. Take
a moment and brainstorm the steps with the class. Don't let this take too long; for
this activity the steps do not need to be overly detailed. You should end up with
something like this:

¢ Open the bottle
e Pour the water into the cup
e Drink the water from the cup

BANANA TALES

PART ONE

Have a student follow the instructions to demonstrate that they work. Unless you
have extra bottles or the means to refill, make sure they don't pour out all of the
water.

Now write (or have a student write) the steps on a sheet of paper and cut them
apart. Scramble the steps so they are not in the original order. Let another
student attempt to follow the reordered instructions (For the sake of hygiene, use
a new cup). Most likely they will not succeed in drinking the water. Let a couple
more students try with different permutations of the steps.

DISCUSSION - 3 MIN

Ask the students if the order of the steps in the procedure matters. They will say
of course. Then ask them how they knew what order to do the steps in when they
were originally writing the procedure. This is a fairly deep question. They may
have insights on their own, but the main idea you want to them to get is that
ordering the steps contains an element of working backwards: To drink the water
from the cup, the water has to get there first, and to get the water into the cup,
the bottle has to be opened first.

PLAYTIME - 30 MIN

LOG-IN - 2 MIN
Students should log-in to their accounts as usual.
PLAYTIME (1) - 6 MIN

When students begin challenge 12, have them read the code that is already there
and make a prediction about what is going to happen. Have them write their
predictions down rather than saying them out loud. Students should then run the
code to test their predictions.

Ask one or more students to explain why the given code failed to solve the
challenge (The giraffe was in the way when the snake was stretching). Then ask
someone what can be done to fix the problem (Switch the order of the two steps).

Let students implement this solution and get their three stars. Then explain that
the process of looking at code that does not do what you want it to and figuring
out what can be done to fix it is called debugging. As this challenge illustrates,
debugging often involves making sure that each step is in the proper order and
that nothing is left out.

Now is a good time to point out to students the button with the
counterclockwise arrow located to the left of the Run! button. If they ever get
ahead of themselves or get lost and need to restore the default code for a
challenge, they can click this button to do so.

PLAYTIME (2) - 22 MIN

Students should work on Challenges 11 - 18 and try to complete each with three
stars.

BANANA TALES

PART ONE

e In Challenges 15,16, and 18 there are additional snake and giraffe objects that
can be added to the game area by drag and drop. In some cases, using the
additional animals is necessary, in some cases not.

¢ Remind students that they can always find the name of an object by
hovering their mouse over it and that clicking on an object will copy the
name to the code area.

e The three-star solution to Challenge 15 is four lines of code and involves using
only the two snakes and two giraffes that are already on the screen.
Nonetheless, the availability of the additional animals in the drag and drop
area means there are a number of other possible solutions. Challenge
students to find as many different solutions as possible. Alternative solutions
that use more animals and more lines of code will not receive three stars but
trying to find them is still a worthwhile exercise.

e There are also multiple solutions possible for Challenge 18, though they are
less interesting than the ones for Challenge 15.

DEBRIEF - 5 MIN

Have students share and compare the alternate solutions they found to
Challenges 15 and 18.

BANANA TALES

PART ONE
LESSON 3 - LISTS
CSTA STANDARDS
Elementary (3 - 5) Middle (6 - 8) High (9 - 12)
3A-AP-14
1B-AP-15 2-AP-17 3B-AP-12
3B-AP-21

OBJECTIVES

° Define list and index
e Useindex syntax to refer to list elements
e Complete Challenges 19 - 25

COMPONENTS

PYTHON

e Function call syntax
. Lists

PLATFORM

¢ Whale objects

INTRODUCTION - 5 MIN

ACTIVITY - 5 MIN

For this activity you will need to go outside or some space in your classroom. It
does not have to be a large space, but there needs to be enough room for at least
three students to move around. Use colored paper to create several “targets” in
the play area.

Choose several students to be the Walkers and one to be the Programmer. You
should use as many students as you have target papers; at least three but not
more than five. Start the Walkers at random positions in the play area. The

i

BANANA TALES .

PART ONE

Programmer needs to give the Walkers instructions to navigate to the targets.
They should use directions like “turn left”, “turn right”, “take three steps forward”,
etc. In giving the instructions, the Programmer must address each Walker by

name, e.g. “Alex, turn right. Shannon, take four steps forward.”

Play this game until the all of the Walkers have reached a target. Then (if your
numbers allow), choose a new set of Walkers and a new Programmer. This time
give each walker a sign with a number, starting with O. So if you have three
Walkers, you will use signs with the numbers O, 1, and 2. This second round works
the same as the first but instead of addressing students by name the
Programmer will refer to them by number, i.e. “Student 0", “Student 1", etc.

DISCUSSION - 1 MIN

Explain to students that today’s lesson is about lists. Lists are a way of grouping
similar objects together, so we don't have to give every single one its own name.
Just as we did during the activity, when we write code, we refer to items on a list
using the name of the list (like “Students”) and a number.

PLAYTIME = 35 MIN

LOG-IN - 2 MIN

Students should log-in to their accounts as usual.

PLAYTIME (1) - 3 MIN

Before students run the starter code for Challenge 19, ask them to click on the car
to see what happens without any code. They should notice that while the whale
by itself does have an impact (the car can drive on top of it), an inactive whale
isn't of much use in getting the banana to the monkey.

Now let students run the code and launch the car again. This time the whale
sends up a waterspout that lifts the car.

EXPLANATION (1) - 5 MIN

Explain to the students that the whale is a new type of object. Recall that we said
that in computer science an object is a collection of code and data used to
represent something. When we worked with the giraffe and snake objects in the
previous sections, we used their height and length properties to change how they
were represented on the screen. The property “remembers” the height or length
and when we change it, it affects the object.

The whale object doesn’t have height or length properties. Instead, it has a blow()
method. A method is a specific piece of code that is part of an object that makes
it do something. In our case, the blow() method instructs the whale object to
spray a waterspout above its head.

The blow() method does not “remember” the height of the water, it just performs
the action on a whale.

Notice the syntax for a method. Like a property, it is connected to the object by a
dot. Unlike a property, the method name is followed by parentheses. Inside the

BANANA TALES :

PART ONE

parentheses is a value called the argument of the method. Argument probably
seems like kind of a strange word here, but in this context, it just means an input
that tells the method how to do its job. The argument to the blow() method is a
number that tells the whale how tall to make the water spout.

PLAYTIME (2) - 3 MIN

Have students move on to Challenge 20. Let students solve this challenge and
then move into the explanation.

EXPLANATION (2) - 5 MIN

Notice how the two whales are referred to here. In the past when we had multiple
objects of the same type, each one had its own name, like giraffe_2 and
giraffe_ 3.

Here the plural word whales refers to a new kind of thing, a list. A list is pretty
much just what it sounds like: an ordered collection of things. In this case, the
whales list contains two separate whale objects. We can refer to them individually
by using an index in square brackets following the name whales. The index
counts from the beginning of the list, except the counting starts at 0. So the first
whale in the whales list is whales[@] and the second whale is whales[1].

Make sure students understand this distinction: In a name like whale_2, the
underscore and the number have no special meaning to Python. whale 2 is just a
name that happens to have an underscore and a number. But when they see
something like whales[2], the square brackets and number do have a special
meaning. They mean that we are referring to the third item (count 0,1, 2) in a list
called whales.

(To be clear, it is not the fact that whales is plural that makes it a list. But using a
plural name is a good way to remind ourselves that whales is a list that contains
multiple objects.)

PLAYTIME (3) - 17 MIN

Let students complete Challenges 21 - 25 on their own. They will continue to use
lists to refer to the whales and the blow() method to create water spouts of the
appropriate height.

e In Challenges 21 and 22 there are columns of obstacles that block the water
spout if it goes too high, so students will have to choose the arguments for
their blow() methods carefully. If they have trouble, remind them that a grid
appears when the mouse is over the play area and they can just count the
squares to find the right height.

e In Challenge 23, students will need to add whales from the drag and drop
area.

e Challenges 24 and 25 use giraffes and snakes instead of whales. The syntax
for referring for an individual animal that is part of the list is the same, but
you may need to remind students that giraffes and snakes have height and
length properties instead of a blow() method. So the command to change
the height of the leftmost giraffe in Challenge 24 would be
giraffes[0].height = 7, for example.

BANANA TALES

PART ONE

DEBRIEF - 5 MIN

Get students to pull up their solutions to Challenge 23. There should be four
whales on the screen. Ask students how to refer to each one in Python code
(whales[@],whales[1], whales[2], and whales[3], though which is which will
depend on the order in which the student dragged them onto the play area).

Have students add the line whales[4].blow(5) to their Challenge 23 solutions.
What happens? Ask a student to explain what the error message means
(whales[4] refers to the fifth whale in the list but there are only four there).

Ask students how their code would be different if Challenge 23 were much wider
and it took twenty whales to reach across the screen. Would it be inconvenient to
call the blow() method individually for that many whales? End with a promise
that the next lesson will show them how to make jobs like that much easier.

13

BANANA TALES

PART ONE

LESSON & - FOR L00PS
CSTA STANDARDS

Elementary (3 - 5) Middle (6 - 8) High (9 - 12)

3A-AP-14

1B-AP-08
2-AP-T1 3A-AP-15

1B-AP-09
2-AP-12 3A-AP-23

1B-AP-10
2-AP-17 3B-AP-11

1B-AP-15
2-AP-19 3B-AP-12

1B-AP-17
3B-AP-21

OBJECTIVES

e Use for loops to iterate through lists
e Review concepts from previous lessons
e Complete Challenges 26 - 30

COMPONENTS

PYTHON

for loops
Indentation
Comments

INTRODUCTION - 5 MIN

ACTIVITY - 5 MIN

This activity is similar to the activity in the previous lesson. You will need to clear a
play area with room for several students to move and colored paper to use as
targets. This time, arrange the colored papers in a row at one end of the play area.

BANANA TALES

PART ONE

For this version of the activity it is better to have five or six Walkers and Targets,
but as few as three can still work.

This time you will need Walkers, a Programmer, and a Recorder. The Recorder’s
job is to record the instructions that the Programmer gives. Give the Walkers
signs (starting with 0) and line them up exactly opposite the target.

Let the Programmer direct the Walkers while the recorder writes down their
instructions. Remind the Programmer that the numbers on the signs represent
the list index of each student and that they still must address each student
individually using the appropriate index. They should come up with something
like:

Student o take six steps forward
Student 1 take six steps forward
Student 2 take six steps forward
Student 3 take six steps forward
Student 4 take six steps forward

Now ask the class to look at this list of instructions and think if there is any way to
simplify it. The students may have a number of suggestions, but someone will
probably say “Why can't we just say, ‘Every student take six steps forward'?”
Explain that in real life we easily could, but in programming it's a little trickier
because Python can only do one thing at once. Nonetheless, there is a structure
in Python called a for loop that makes it easy to repeat the same instructions for
every item in a list, and that's what today’s lesson is about.

PLAYTIME = 30 MIN

LOG-IN - 2 MIN
Students should log-in to their accounts as usual.
PLAYTIME (1) - 6 MIN

Let students run the starter code for Challenge 26 and test it by launching the
car. They can make the straightforward fix to the code in a moment, but first help
them understand the new elements of the Python code presented here.

This is an example of a for loop. In computer science, a loop is a control structure
that tells the computer to repeat certain code over and over. There are different
types of loop structures, and they determine how many times to repeat the loop
in different ways. In Python, a for loop is used to repeat the code one time for
each element in the list.

Look at the first line of the code: for whale in whales: The keywords for and in
and the colon and the end of the line are part of Python syntax and will be the
same for every for loop. The whales after the word in refers to list we intend to
loop through, and whale is the name of a variable that changes each time the
loop repeats. In other words, each time through the loop, whale will represent a
different object that is part of the whales list.

1y

BANANA TALES

PART ONE

The second line is the code that will be repeated by the loop. Notice how it is
indented several spaces relative to the for. In Python, indentation is used to
group code together. If we wanted to have several lines of code repeat within the
loop, we would have to indent each one the same amount.

PLAYTIME (2) - 22 MIN
Students should work to complete Challenges 26 - 30 with three stars.

e Challenge 29 is an assessment challenge that asks students to write all of the
code from scratch. If they get stuck, have them look back at their solutions to
the previous challenges to remind themselves of the syntax for a for loop.

e Thelines that begin with #s in Challenge 30 are comments. Comments are
written in computer code for humans to read; the computer ignores them
when running the code. They are useful when programmers are working
together to communicate with each other about what a particular piece of
code does, or even for a programmer working alone as notes to her or
himself. In Python, any line beginning with #is a comment. Commments don’t
count against students' line totals when it comes to earning stars.

DEBRIEF - 10 MIN

Have students go back to Challenge 23 and try to solve it with a for loop. If they
were successful with the other challenges in this section, then it should be fairly
easy. If they need help, here is a working loop solution to Challenge 23:

for whale in whales:
whale.blow(e)

Now have them go to Challenge 22 and try to write a for loop-based solution to it.

They will probably struggle with it unless they have previous experience with
Python outside of this course. Give them a few minutes to experiment then call
time out. Ask them what it is about Challenge 22 that makes it so much harder to
use a loop than in Challenge 23. They may have a variety of answers, but the main
factor is that in Challenge 22 each whale has to blow() to a different height but in
a loop the code is executed the same way each time. Later in the course we will

learn several ways to remove that limitation and make loops much more versatile.

BANANA TALES

PART ONE
LESSON 3 - RANGE
CSTA STANDARDS
Elementary (3 - 5) Middle (6 - 8) High (9 - 12)
3A-AP-14
1B-AP-09 2-AP-T1
3A-AP-15
1B-AP-10 2-AP-12
3A-AP-23
1B-AP-15 2-AP-17
3B-AP-12
1B-AP-17 2-AP-19
3B-AP-21

OBJECTIVES

e Usethe range() function for iteration
e Usethe print() function to display the values of variables
e Complete Challenges 31- 40

COMPONENTS

PYTHON

e print() and range() functions
e Function call syntax with multiple arguments

PLATFORM

) The console tab

INTRODUCTION = 5 MIN

EXPLANATION - 5 MIN

This lesson introduces several functions. Explain to students that a function, like a
method, is a piece of code that does a specific job, except it is not tied to a
particular object. The main focus of this lesson is a using the class range().

BANANA TALES .

PART ONE

Start by displaying a labeled number line like the one below:

o 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7 8

Explain that the range() is used to generate a sequence of numbers. The number
line model will be used to illustrate how range() works. In the number line model,
inputs to the range() correspond with the numbers under the hash marks and
outputs correspond to the numbers above the line between the marks.

A
r

The simplest way to use range() is with a single argument. In that case range()
returns a sequence of integers starting at 0 and going up through one less than
the argument. So range(5) would return the numbers: 0, 1, 2, 3, 4.The fact
that 5is not included in the list will probably bother students, but the logic of it
can be explained with the model.

o 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7 8

Remind students that inputs are on the bottom and outputs are on top. range(5)
means start shading from the left (at hash mark O) and stop at hash mark 5. This
means that the numbers that get shaded are 0, 1, 2, 3, and 4. 5 is not included in
the output because it is to the right of the 5 hash mark.

A
r

This model will probably help some but not all students, but it should give them a
foundation to build on as they approach the first few challenges.

PLAYTIME = 35 MIN

LOG-IN - 2 MIN
Students should log-in to their accounts as usual.
PLAYTIME (1) - 13 MIN

A lot of new things are introduced in Challenge 31. To avoid overwhelming
students, they only need to change the giraffes’ heights. As usual, have students
run the code as given first, then review the following elements with them before
letting them complete the challenge.

Lines 2 - 4 use the print() function and range(). The print() function displays
data as text in the console window below the code area. Make sure students note
that when they want to display literal text as on lines 2 and 4 they have to put it in
guotation marks.

As discussed in the Introduction, if range() is given a single argument, the
seguence consists of all of the integers from 0O to one less than the argument. So
range(6) creates the sequence o, 1, 2, 3, 4, 5.

BANANA TALES

PART ONE

range() is often used with for loops. The for loop that begins on line 5 will
execute six times, with index taking the value O, then 1, then 2, then 3, then 4 and
then 5. Inside the loop the index variable is used to refer to the different elements
of the giraffes lists.

Also make sure students notice that this time the code inside the for loop
contains multiple statements and that they are all indented the same amount.

Once you have completed the code walk through, let the students complete
Challenge 31 and then complete 32 - 35 on their own. These challenges follow the
same model as 31 but each requires students to write more code on their own.

PLAYTIME (2) - 20 MIN

Before students get to work on Challenge 36, ask them if all of the giraffes have
room to change their height. They should see that the answer is no. Then ask
them which ones do have room. Make them give their answer in Python terms. In
other words, they should say giraffes[3], giraffes[4], giraffes[5], and
giraffes[6].

This challenge illustrates another form of range() that can be used to create a
seqguence of these indices. When range() is given two arguments inside the
parentheses separated by a comma (e.g. range(3, 7)), the first argument is the
integer to start at and the second is one less than the final number. So range(3,
7) creates the sequence 3, 4, 5, 6, exactly the indices we need for the giraffes in
this challenge.

In fact, range(7) is the same as range(0, 7), but since the default is to start from
0, we can use range with just one argument.

The number line model extends quite naturally to two-argument range(). The
shading goes from the left of the hash mark corresponding to the first argument
to the right of the hash mark corresponding to the second.

o 1 2 3 4 5 6 7

0 1 2 3 4 D 6 7 8

Once students understand the new range() syntax, let them complete the
challenge.

3

Challenge 39 is an assessment challenge for the two-argument range() syntax. If
students read the instruction text it shouldn't be too hard.

DEBRIEF - 5 MIN

Have students write down the answers to these questions to check their
understanding of range():

¢ What is produced by the statement range(5)?
e What is produced by the statement range(7)?
¢ What is produced by the statement range(2, 7)?

BANANA TALES

PART ONE

¢ What is produced by the statement range(4, 9)?

The answers are, respectively:

L4 e) J J J
e O
2

-

-

W R R
-
ANOON
-

3, 4
3, 4, 5, 6
s 3, 5, 6

J J

e 4, 5,6, 7, 8
Discuss and review using the number line model as necessary.

BANANA TALES

PART ONE

LESSON - VVARIABLES
CSTA STANDARDS

Elementary (3 - 5) Middle (6 - 8) High (9 - 12)

3A-AP-14

1B-AP-08
2-AP-T1 3A-AP-15

1B-AP-09
2-AP-12 3A-AP-23

1B-AP-10
2-AP-17 3B-AP-11

1B-AP-15
2-AP-19 3B-AP-12

1B-AP-17
3B-AP-21

OBJECTIVES

Define variable

Use a variable to store a numerical value

Assign to a variable using an arithmetic expression
Complete Challenges 41 - 47

COMPONENTS

PYTHON

e len() function

INTRODUCTION - 10 MIN

EXPLANATION -10 MIN

Ask students what they know about the word variable. Depending on their
backgrounds you might hear a lot of different ideas. Students who have had

algebra or pre-algebra may talk about variables in math and solving equations.

BANANA TALES

PART ONE

Some may refer to the variables that are used in for loops that were introduced in
the last lesson. Many may have had enough exposure to coding so they'll say
something about a variable being a place to store numbers or other kinds of data.

Build on students’ existing knowledge to make sure they understand the
following ideas about variables. A variable is a place in the computer's memory for
storing some kind of data. The data could be a number, a text string, a list, a code
and data object like a giraffe, or any of a number of other types that Python
understands.

Variables have names that we can use in our code. A pretty good way to think of a
variable is as a box with a name stamped on the front of it. The box provides the
storage space and the name gives us a way to refer to it.

Variables get created and named in a number of different ways. In most of the
challenges so far, there have been different kinds of animal objects that were
automatically created and named by the CodeMonkey system. If a challenge had
a single giraffe on the screen, the system gave us a pre-made variable called
giraffe so we could refer to it.

We've also seen variables created by for loops. In code like:

for snhake in snakes:
snake.length = 2

we are telling Python to create a new variable called snake and make sure it
contains the next item from the snakes list each time through the loop.

We can also create our own variables. The statement goal = 3 creates a storage
space, gives it the name goal, and stores the number 3 in that space. Then later in
our code we can use goal anywhere a number would go.

PLAYTIME - 30 MIN

LOG-IN - 2 MIN
Students should log-in to their accounts as usual.
PLAYTIME - 28 MIN

Look at challenge 41 together with your students. Point out that it is quite similar
to challenges from the last lesson; as before we are using a for loop to set multiple
snake to the right length to create a path for the car. The difference is that in this
case a variable is used to represent that length. Point out how the variable
goal_length is created at set on line 2 and used to set the lengths of the other
snakes on line 7.

Let students test the code as written and then debug it. The only fix needed is the
index on line 6 needs to be changed to 3. Then have students complete
Challenge 42, which is very similar.

Ask them what the advantage of using the goal variable like this is. There may be
a number of possible answers but one is that since giraffes[0] is already the

BANANA TALES

PART ONE

“right” height, then using the goal variable saves us the trouble of counting out
the distances manually. Later challenges in this lesson will illustrate this and other
ways variables can make code more versatile.

Challenge 43 is a one liner; students just need to change the argument of the
blow() method. But make sure that they notice use of the len() function on lines
2 and 4. Explain that 1en() takes a list as an input and returns the number of
elements in the list as an output. 1len() is often used as the input to range() as on
line 4 because that means the list of numbers returned will be exactly what is
needed for indexing the list.

Challenge 44 is a new format. There are two play areas with two baby monkeys
on the right. The goal is to write one program that solves both challenges.
Students should test their code in each play area without making any changes in
between. This challenge is intended to illustrate how using a goal height variable
to set the heights of all of the giraffes allows the same code to be used for both
parts of the challenge.

Challenges 45 through 47 ask students to use a variable called height to set the
heights of the giraffes inside of the for loop, but add the additional wrinkle of that
variable changing each time through the loop. This is another way that variables
allow us to write more flexible code. In

DEBRIEF - 5 MIN

Review with your students what they learned in this lesson.

Show your students the following sets of code and ask them to name the
variables and their values:

height = 2

for giraffe in giraffes:
giraffe.height = height
height = height + 1

e variables are:
o height —its value is 4; on each iteration its value increases by 1

o giraffe —on each iteration its value changes and gets the next giraffe in
the giraffes list

for index in range(5):
giraffes[index].height = 4

e Vvariableis:

o index-itsinitial value is O; on each iteration its value increases by 1 until
it reaches 4

BANANA TALES

PART ONE
CSTA STANDARDS
Elementary (3 - 5) Middle (6 - 8) High (9 - 12)
3A-AP-14
1B-AP-09 2-AP-T1
3A-AP-15
1B-AP-10 2-AP-12
3A-AP-23
1B-AP-15 2-AP-17
3B-AP-12
1B-AP-17 2-AP-19
3B-AP-21

OBJECTIVES

. Define conditional

e Use if statements to choose which objects to perform an action with during
iteration

Complete Challenges 48 - 53

COMPONENTS

PYTHON
° if statements
PLATFORM

e Dragon and obstacle objects
e fire_at(),smash(),and is_ice() methods

INTRODUCTION -] MIN

ACTIVITY -7 MIN

Arrange a few of your students (at least six, if possible) in a line. Choose one
additional student who is not in the line. Display the following pseudo-Python
code and ask them to do what it says:

BANANA TALES

PART ONE

for student in the 1line:
give student a high five

The chosen student should of course high five every student in the line. Now
display this code and have another student carry it out:

for student in line:
if student is wearing a blue shirt:
give student a high five

Replace “is wearing a blue shirt” with any description that is fairly obvious and
that applies to approximately half of the students in the line. It is best not to use
students’ gender or physical appearance for this. If you can provide some of the
students with silly props to wear (novelty sunglasses or hats, etc.) and base the
condition on these that would be ideal.

If you have multiple different props you may want to repeat this exercise a couple
of times with different conditions for the “if” part, but that's not absolutely
necessary. Conclude the activity be explaining that the lesson today is about
learning how to use the if statement in Python to choose whether or not to do
actions on items in a list based on their properties.

PLAYTIME - 31 MIN

LOG-IN - 2 MIN
Students should log-in to their accounts as usual.
PLAYTIME (1) - 15 MIN

Let students work on Challenges 48 - 50 on their own. These challenges
introduce the dragon character and the types of obstacles he can remove.
Students need to notice that the dragon has two main tricks - he can breathe fire
and he can smash things - each with a corresponding method. These methods
each take one argument, the object that the dragon is attacking. Make sure that
students test what happens when they use the “wrong” method on an object;
they should notice that if they fire_at() a box or smash() an ice block it doesn't
remove it as an obstacle.

In Challenge 48 the obstacles all have individual names so students will have to
write one line of code for each obstacle. In Challenges 49 and 50, the students will
have to write a for loop to earn three stars. Do not let students move on until they
have received three stars on each of these challenges.

PLAYTIME (2) 14 MIN

Give students a few minutes to work on Challenge 51. This challenge introduces a
new concept (the if statement) but it may also be just a little tricky to figure out
what the dragon needs to do to solve the puzzle. Eliminating every obstacle won't
work because it will leave the banana trapped in the “pit” in the middle of the
screen. The same is true of eliminating just the boxes. What does work is
eliminating the ice blocks which allows the boxes to drop down and create a path
for the banana.

BANANA TALES

PART ONE

After students have figured out the solution to the puzzle, either by themselves or
with some hints, take a few moments to look at and discuss how the if
statement works. The basic syntax is like this:

if CONDITION:

STATEMENT
STATEMENT

CONDITION is a special kind of expression that represents a yes or no answer,
though in Python we usually express those concepts as True or False. Some other
computer languages spell these keywords true and false but in Python they
have to begin with a capital letter. In Challenge 51, we use the is_ice() method of
each obstacle which returns True if and only if the obstacle is an ice block. The if
statement in Python works in a way that more or less corresponds with how the
word “if” works in English: the statements are executed only if the CONDITION is
True. Otherwise, the statements are skipped over entirely. Students should also
notice that just as with the for statement, indentation is used to mark which
statements are controlled by the if.

Draw the students’ attention to the fact that the methodsis_ice(), is_box(),
is_fence() are used with empty parenthesis. When a method does not have any
arguments, we use the empty parenthesis.

Once you are confident that students have a handle on how if works, you can let
them move on to Challenges 52 and 53. Challenge 52 is a variation on the theme
of Challenge 51. Make sure students notice that there are draggable items in this
challenge; they will need to use boxes to fill in the mini-pits between the banana
and the monkey.

Challenge 53 is an assessment challenge. It uses the same basic idea as in the
previous challenges - the dragon must only eliminate the ice blocks - but
students have to write the code for the loop with the if statement from scratch.
They can refer to their solutions from the previous challenges for help. This
challenge also contains the additional wrinkle that it is necessary to eliminate one
of the middle two boxes. Some students may need a reminder that not all of their
code needs to be part of the loop. In this case a single
dragon.smash(obstacles[7]) either before or after the loop will get the job done
(dragon.smash(obstacles[5]) works as well).

DEBRIEF -] MIN

Display the following code:

for obstacle in obstacles:
if obstacle.is ice():
dragon.fire_at(obstacle)

Have students look back at Challenges 48, 49, and 50. Ask students which of
these challenges the given code would successfully solve (not necessarily with

BANANA TALES

PART ONE

three stars). Once they all agree that Challenge 50 is the only one that can be
solved with this code, ask them to explain why the code does not work for the
other two.

e For Challenge 48, the obstacles are not part of a list so the for loop won't
work.

e For Challenge 49, none of the obstacles are ice so the code in the if
statement will not be executed. And even if it was, fire_at() is the wrong
method to use for boxes anyway.

Finally, ask students to reconsider Challenge 48. What if the obstacles in this
challenge were part of a list? Would the given code work in that case? Why not?

Guide the conversation here. The main idea you want to conclude with here is
that the if statement is somewhat limited. What we really want is a way to do
one action if the condition is true and a different action if the condition is false.
That is the focus of the next lesson.

BANANA TALES

PART ONE
LESSON § - TE/EUSE
(STA STANDARDS
Elementary (3 - 5) Middle (6 - 8) High (9 - 12)
3A-AP-14
1B-AP-09 2-AP-T1
3A-AP-15
1B-AP-10 2-AP-12
3A-AP-23
1B-AP-15 2-AP-17
3B-AP-12
1B-AP-17 2-AP-19
3B-AP-21

OBJECTIVES

e Use if/else statements to choose what action to perform with an object
during iteration

¢ Complete Challenges 54 - 59

COMPONENTS

PYTHON
e if/else statements
PLATFORM

e 1is_fence() and is_box() methods

INTRODUCTION -] MIN

ACTIVITY -7 MIN

This activity is similar to the one from the previous lesson. Arrange a few students
(at least six) in a line and choose one additional student to carry out the following
procedure:

for student in line:
if student is wearing a green shirt:

BANANA TALES :

PART ONE

give student a high five
otherwise:
shake the student's hand

Ask students to compare this version of the activity to the one from the last
lesson. In addition to possibly using a different condition, they should note that
this time the procedure includes instructions on what do if a student does not
meet the condition.

Do the activity one more time with this pseudo-code. You may change the
student who is executing the procedure but keep the students in line the same.

for student in line:
if student is wearing white shoes:
give student a high five
otherwise:
shake the student's hand

As before, you can change the conditions of the two procedures to fit your
students. It is important that you have some students in the line that meet the
first condition, some that meet the second, and some that meet neither. Giving
students simple props or even something like colored stickers might make this
easier.

After the second run through, point out that while each time everyone in line got
either a high five or a handshake, which students got which changed depending
on the condition. This is the idea behind today’'s challenges, which involve
choosing the right conditions to have the dragon doing different actions with
different obstacles.

PLAYTIME - 33 MIN

LOG-IN - 2 MIN
Students should log-in to their accounts as usual.
PLAYTIME (1) - 8 MIN

Challenge 54 is mostly a review, but you need to make sure that students earn
three stars before they move on. Students will need to use a new method,
is_box(), in order to have the dragon destroy only the box obstacles. The starter
code for this challenge is a little misleading because it suggests writing two lines
of code for each obstacle. In order to three star this challenge students will need
to use a loop instead.

Once a student has achieved three stars on this level direct them back to
Challenge 48. Based on what they see here ask them to predict what other
method obstacle objects might have besides is_ice() and is_box(). Once they
have made their prediction, let them move on to Challenge 55.

When students reach Challenge 55 point out the is_fence() method and have
them check their predictions. Then let them complete the challenge. If anyone
has trouble point out that the two if statements inside the loop are meant to

BANANA TALES

PART ONE

choose the appropriate action depending on the type of obstacle. Everything in
the given code is correct; to finish all they need to do is fill in the appropriate
statements on lines 3 and 5. You may also need to remind students about the
draggable objects that are available on this challenge.

ANALYSIS - 11 MIN

Once everyone has completed challenges 54 and 55 with three stars, direct them
to Challenge 56 and ask them to temporarily ignore the code outline they are
given. Instead, they should consider each of the following possible solutions and
discuss whether they solve the challenge and why or why not.

for obstacle in obstacles:
dragon.fire_at(obstacle)

Here students should recognize that this will not work because fire_at() only
removes ice blocks.

for obstacle in obstacles:
if obstacle.is ice():
dragon.fire_at(obstacle)

This is a slight improvement over the previous code. The dragon will not waste its
breath firing at obstacles that are not ice. But this code still contains no
instructions for removing the boxes.

for obstacle in obstacles:
if obstacle.is ice():
dragon.fire_at(obstacle)
if obstacle.is box():
dragon.smash(obstacle)

This works. Once all the students recognize this, ask them to consider what it
means when obstacle.is _ice() is False. They need to recognize that since all the
obstacles on the screen are either ice blocks or boxes, once you have determined
that a particular obstacle is not an ice block, you already know it's a box. So in a
sense the second if is redundant. It would be nice if we had a way to write code
that says “if this condition is true, do one thing, otherwise do something else”. Not
surprisingly, Python provides a way for us to do that.

PLAYTIME (2) - 12 MIN

Now let the students return to the starter code for Challenge 56. If they made
changes to the code during the discussion, remind them that they can use the
button to the left of Run! to reset everything.

This code illustrates the if/else construct for Python. if/else does exactly what
was described above; it executes one block of code if the condition is true, and a
different block if not. The general syntax looks like this:

if CONDITION:

30

BANANA TALES

PART ONE

STATEMENT
STATEMENT

else:

STATEMENT
STATEMENT

It is important that students understand that either the first (condition True) or
second (condition False) block will always be executed, not both and not neither.

After the explanation, let students tackle Challenge 56. The if/else syntax is
already set up correctly; they just need to set up the loop in line Tand write an
appropriate statement to destroy the ice blocks in line 3. Provide hints as needed,
and as soon as students get three stars in this challenge let them move on to the
next.

Challenges 57 and 58 provide students with for practice using if/else. Challenge
57 is similar to 56 except that the smashable objects are fences not boxes.
Challenge 58 introduces a small complication by having both types of
smashables. Students may be tempted to use is_box() or is_fence() in their
condition but they should heed the instructions and base their solution on
is_ice() instead. The general principle is that the if condition should be the
more specific one, as the else must apply to everything else.

Challenge 59 is an assessment challenge, and a two level one at that. Students
will have to write code that solves both challenges from scratch, but the ideas are
the same as for the previous challenges.

DEBRIEF - 5 MIN

Tell students to go to Challenge 59 and then show them the following potential
solution:

for obstacle in obstacles:
if obstacle.is box():
dragon.smash(obstacle)
else:
dragon.fire_at(obstacle)

Ask students if this will work and why or why not. Ideally, they will be able to
answer without running the code, but if they have trouble let them type it in and
try it. They should see that the problem here is that the dragon does the wrong
action with fences - it burns instead of smashing them.

The takeaway is that since if/else only allows the code to go in one of two
directions the condition must be carefully chosen so that it is True for all of the
situations that require one code path and False for all that require the other.

3

BANANA TALES

PART ONE

Later lessons will introduce ways to write more elaborate conditions that can
make these choices easier.

BANANA TALES

PART ONE

LESSON 9 - WHILE 100PS
CSTA STANDARDS

Elementary (3 - 5) Middle (6 - 8) High (9 - 12)

3A-AP-14
1B-AP-09 2-AP-T1

3A-AP-15
1B-AP-10 2-AP-12

3A-AP-23
1B-AP-15 2-AP-17

3B-AP-12
1B-AP-17 2-AP-19

3B-AP-21

OBJECTIVES

e EXxpress a conditional with arithmetic comparison operators
e Useawhile loop to repeat an action as long as a certain condition is true
¢ Complete Challenges 60 - 66

COMPONENTS

PYTHON
. while statements
PLATFORM

e Elephant and Well objects
e water_level and max_water_level properties
e spray at() method

INTRODUCTION - 10 MIN

ACTIVITY - 9 MIN

For the activity you will need at least one container and a supply of counters. A
glass, cup, or jar is fine for the container (transparent is better) and the counters
can be chips, marbles, coins, or something similar. Ideally you can provide a

33

BANANA TALES :

PART ONE

container and some counters to every student, but the activity can work with just
one. You will also need some way to play music that is audible to the entire class.

Provide cups and counters to as many students as possible then display the
following pseudo-code:

repeat these steps while the music is playing:
add 1 counter to the cup
wait 2 seconds

If any students ask how they will know how long two seconds is, tell them just to
estimate. You may wish to demonstrate counting off “one-one-thousand, two-
one-thousand” but don't let concerns about exact timing bog down the activity.

Tell the students to follow the code and then start the music. They should begin
adding counters to their cups at approximately two second intervals. After 20 or
so seconds stop the music.

Briefly discuss the activity. If you noticed any student who only added one
counter to the cup or who kept adding counters after the music had stopped,
point out that the first statement tells them to repeat the actions below, but only
while the music is playing. If any students were adding counters continually
without any pause remind them that because both instructions were indented
both should be repeated - add counter, wait; add counter, wait; add counter, wait;
etc.

Now have students empty their cups and reset. If you don't have enough supplies
for everyone, switch off now and let a new group of students take a turn. This
time the students will be following this pseudo-code:

repeat these steps while the number of counters in the cup is less than 6:
add 1 counter to the cup
wait 2 seconds

Tell the students to start. It should only take them 20 seconds or so to complete
the procedure. Ask students to count the number of counters in their cup. If they
followed the procedure correctly, they should each have six, but it is fairly likely
that some of them will have only five and some may possibly have seven.

Ask one or more students who carried out the procedure correctly to explain their
thinking. The key idea is that you have to check the number of counters in the
cup before you repeat each time. If the number of counters in the cup is five, yes,
that is less than six, so you do the steps again and add another counter. When
there are six counters in the cup, six is not less than six so you do not repeat
anymore and the procedure is over.

EXPLANATION -1 MIN

Ask students what you call a structure in computer programming that repeats
the same steps over and over. The answer is loop, though if a student says for
loop you can point out that there are other types of loops that use different rules
to determine how many times to repeat the steps. Today's lesson is about a new
kind of loop called a while loop.

BANANA TALES

PART ONE

PLAYTIME = 30 MIN

LOG-IN - 2 MIN
Students should log-in to their accounts as usual.
Playtime (1) - 4 min

Let students work through Challenges 60 and 61 on their own. These challenges
introduce the elephant and well objects and the spray_at() method that causes
an elephant to add water to a well. It shouldn't take students very long to
complete these challenges, but before you move on make sure they understand
the following ideas.

e spray_at() does not automatically fill the well; it only adds enough water to
raise the level one unit. That is why it is necessary to spray_at() multiple
times.

e Trying to spray_at() a well that is already full causes an error that forces you
to Rewind without completing the challenge.

Explanation - 9 min

Before students move on from Challenge 61, discuss the properties of wells that
are introduced there. max_water_level never changes. It represents the amount of
water the well can hold without causing an error. water_level is the current water
level. It increases by one each time an elephant sprays water at the well.

Now look at Challenge 62 as a class. This is a two-level challenge. Remind the
students that for this type of challenge they have to write code that works for
both levels without any changes and ask them why that makes this challenge
harder. They should be able to recognize that because the well on the second
level is deeper than the well on the first, it will require more spray_at()
statements to fill. Completing this challenge depends on finding a way to write
code that will spray the right number of times for each well.

Ask a student to read the commment and supply the missing statement. To solve
the challenge all that is needed is elephant.spray_at(well) under the while
statement. But have students first try this lengthier solution, The extra output is
helpful for explaining how the while statement works.

print("Max water level is:")
print(well.max_water_level)
print("Water level is:")
print(well.water_level)

while well.water level < well.max water level:

3

BANANA TALES .

PART ONE

elephant.spray_at(well)
print("Water level is:")

print(well.water_level)

The general idea of a while statement is simple; it is a new kind of loop that
repeats a set of steps over and over as long as a certain condition is true. In this
case the condition is a mathematical one: The loop will repeat as long as the
water level in the well is less than the maximum possible water level for the well.
That means that when water level is equal to the maximum water level then the
loop will not repeat again. That is exactly what we want, because if the well is
already full, we don’t want to add any more water.

It is important to understand that the condition of the while statement is
checked before every time through the loop (including the first time), but not in
the middle of the loop. In the code above, well.water_level changes as soon as
the spray_at() method is executed, but the next two print() statements happen
Nno matter what since the condition is only checked again once all of the
statements have been executed.

The flowchart below illustrates how while loops work in general:

STATEMENT(S) before while

Is CONDITION true?

no

STATEMENT(S) inside while

STATEMENT(S) after while

PLAYTIME (2) - 15 MIN

BANANA TALES £

PART ONE

Challenges 63 and 64 are a bit more difficult than usual, at least as far as earning
three stars goes. But these are good challenges for students to grapple with on
their own. They will need to use while loops as in the previous challenge to fill
each well the right amount, but they will also need to use a for loop to write the
code to fill multiple wells in the fewest number of lines.

Challenges 63 - 66 gradually reduce the scaffolding and increase the difficulty as
students practice setting up and using while loops.

e Challenge 63 can be solved by simply duplicating the given code and
changing the list indices to O, but in order to earn three stars students will
have to use a for loop. If they get hung up on this tell them to move on then
come back later to pick up the third star.

e Challenge 64 provides a template for using the elephant while loop inside of
a for. Point out the use of the 1len() function inside of range(). This makes
the code more flexible; it will work for lists of any length.

e Challenge 65 is similar to 66 except students have to write all the code
themselves. They should refer back as necessary.

¢ On Challenge 66, the order in which the draggable elephants are added
matters. The first elephant should be added to the central ledge, the second
to the ledge on the right. This is important so the indices of elephants and
wells match.

DEBRIEF - 5 MIN

Display each of the following code snippets:
IF
if CONDITION:

STATEMENT
STATEMENT

FOR
for VARIABLE in LIST:

STATEMENT
STATEMENT

WHILE
while CONDITION:

STATEMENT
STATEMENT

BANANA TALES

PART ONE

Ask students to compare and contrast these types of statements. Similarities they
might point out are that they all use a colon, they all use indentation, and they all
involve one or more statements. Going deeper, they might observe that each of
them is a way to control if and how many times the statement(s) are executed. if
executes the statements or not depending on the condition. for executes the
statements for each element in the list. And while executes the statements over
and over again as long as the condition is true.

Explain that all of these are examples of what are called control structures. Every
programming language has some kinds of control structures. While there are a
few more control structures in Python, at this point students have met all of the
most important ones.

BANANA TALES

PART ONE

LESSON 10 - BOOLEAN OPERATORS |
CSTA STANDARDS

Elementary (3 - 5) Middle (6 - 8) High (9 - 12)

3A-AP-14
1B-AP-09 2-AP-T1

3A-AP-15
1B-AP-10 2-AP-12

3A-AP-23
1B-AP-15 2-AP-17

3B-AP-12
1B-AP-17 2-AP-19

3B-AP-21

OBJECTIVES

e Use and and or operators to write compound conditional statements

e Solve complex problems using compound conditionals and multiple if
statements

Complete Challenges 67 - 74

COMPONENTS

PYTHON
e and and or operators
PLATFORM

e is on_ground() method

INTRODUCTION - 10 MIN

ACTIVITY - 5 MIN

For this activity you need a note card for each of your students. Each card needs
to show one of three shapes (triangle, square, circle) in one of two colors (red and
blue). So, there should be a total of six different kinds of cards, with approximately
equal numbers of each. You can either prepare these in advance or if you have a

BANANA TALES

PART ONE

little extra time have your students create them. Either way, each student should
end up with one card, again with all six types represented more or less equally.

Explain that you are going to give instructions for certain students to stand based
on what is on their card. When they stand, they should hold up their card so the
whole class can see. After each round of the activity everyone should sit back
down again to prepare for the next instruction.

Give the following instructions in this order. If you notice any students standing
when they should not be or vice versa gently correct their error.

e Ifyour picture is a triangle, stand up

e Ifyour picture is blue, stand up

e Ifyour pictureisred and is a circle, stand up

e Ifyour picture is a square and is blue, stand up

e Ifyour picture is a triangle or is a square, stand up
e Ifyour picture is red or is blue, stand up

e Ifyour pictureisred or is a square, stand up

After these seven rounds, sit the students down for the explanation.
EXPLANATION -5 MIN

Point out that each of the instructions in the activity was phrased as an “if"
statement. Just as with an if statement in Python, each of these was based on a
condition, a fact that could either be true or false. In the first couple of
instructions, the condition was simple, e.g. “your picture is a triangle”. But the
later instructions used the words “and” and “or” to combine simple conditions
into more complex ones.

Ask students what it means if you combine two conditions with the word “and”.
The answer should be relatively clear from the everyday meaning of the word.
Both individual conditions have to be true for the whole statement to be true.
When the instruction was “If your picture is a square and is blue, stand up”, only
the people with blue squares stood up.

Now ask about “or”. Again, this is pretty easy though there is one little subtlety
that can throw people off sometimes. In English the word “or” is typically used to
refer to things that are mutually exclusive. For example, if the menu says the
value meal comes with French fries or onion rings, it means you get one or the
other, not both. And asking an “or” question when both conditions are true
usually sounds strange: Do humans need oxygen or food?

Computers interpret the word or differently. A condition made with the keyword
or is True if either part is True. If you are talking about conditions that can't
overlap, like “is a triangle or is a square”, then that's easy. But both conditions can
be true at the same time, like “is red or is a square”, that's kind of different from
how we usually use the word “or” and can be confusing. But in computer logic, an
or statement is considered true if either of its parts are true or if both parts are
true.

PLAYTIME - 29 MIN

BANANA TALES

PART ONE

LOG-IN - 2 MIN
Students should log-in to their accounts as usual.
PLAYTIME - 27 MIN

Students should be able to play through Challenges 67 - 74 on their own. Take a
couple minutes to clarify the following two ideas as they begin the first challenge
then circulate providing hints as needed.

e and and or are operators used to combine conditions in Python. They work
just as was discussed during the introduction.

e The is_on_ground() method only returns True if the obstacle is actually on
the ground; sitting on top of another obstacle doesn’t count.

Let the students puzzle out the challenges on their own as much as possible but
offer hints as necessary.

e Challenge 68 is very similar to 67 except that the dragon must also destroy
the fences. This can be done inside the same while loop.

e The point about how is_on_ground() works is important in Challenge 69.
Using the condition obstacle.is_box() and obstacle.is_on_ground() only
selects the bottom box in each stack, which is what we want.

e Challenge 71 needs a for loop. Students may not realize this since it doesn't
start with a blank line.

e Challenge 72 should be based on if/else. While it is possible (and arguably
simpler) to solve without using an or condition, earning three stars requires
it.

e The hintin the comment for Challenge 74 says to use two if statements.
One should be used to deal with the ice on the ground, the other for the
boxes and fences.

DEBRIEF - § MIN

Display the table below with the entries in the final column blank. Explain that
this is called a truth table for the and operator. The last column is intended to
show whether the whole condition is True or False based on the two conditions
on either side of the and. Go through the table line by line and fill it in with your
class.

e CONDITION_A and

e CONDITION_A e CONDITION_B CONDITION_B
e False e False e False

e True e False e False

e False e True e False

e True e True e True

Once you have finished and, do the same thing with the truth table for the or
operator.

CONDITION_A

BANANA TALES

PART ONE

CONDITION_B

CONDITION_A or
CONDITION_B

False
True
False

True

False .
False .
True .
True .

False
True
True

True

BANANA TALES

LESSON 1] - BOOLEAN QPERATORS /

PART ONE

CSTA STANDARDS

Elementary (3 - 5) Middle (6 - 8) High (9 - 12)

3A-AP-14

1B-AP-08
2-AP-T1 3A-AP-15

1B-AP-09
2-AP-12 3A-AP-23

1B-AP-10
2-AP-17 3B-AP-11

1B-AP-15
2-AP-19 3B-AP-12

1B-AP-17
3B-AP-21

OBJECTIVES

e Write conditionals using the not operator

e Solve even more complex problems using compound conditionals including
the not operator

¢ Review concepts from lesson 9
Complete Challenges 75 - 78

COMPONENTS

PYTHON
e not operator
PLATFORM

Crocodile objects
mouth_closed property
toggle() method

INTRODUCTION - 10 MIN

BANANA TALES !

PART ONE

ACTIVITY - 6 MIN

Discuss the word “toggle”. Ask students if they have heard the word before and
what they know about it. It is important that they understand that toggle means
reversing the state of something. A good example to use if students aren't
familiar with the word is a checkbox in a graphical interface. Clicking on a
checkbox checks it if it is unchecked or clears it if it is checked.

In the following activity students will toggle between standing at sitting. The
instruction toggle (in this context) will mean stand if you are sitting and sit if you
are standing.

Have your students count off (starting at O) and remember their number. Explain
that for the activity the whole class is going to be treated as a list and that this
number is their index in the list.

Choose approximately half the students at random and have them stand. Then
ask the class to carry out the procedure represented by the following pseudo-
code:

for student in class:
student.toggle()
wait 1 second

Every student should change positions, acting in the order they counted off
earlier. If multiple students move at once, remind them that for loops visit each
item in the list in order and start the exercise over.

Once the activity has been completed correctly, have students stay in the same
positions and show them this pseudo-code:

for student in class:
if student.is_sitting()
student.toggle()

Ask students to make a prediction about what will happen and then have them
carry out the procedure. If they followed the instructions correctly everyone
should end up standing.

Have about half of the students (at random) sit down then display one last
procedure:

for student in class:
if not student.is_sitting()
student.toggle()

Explain that not is actually a Python operator, and while the grammar may look
strange here, this is how not works in Python. It goes in front of a condition and
reverses the sense of it. not student.is_sitting() would be False when
student.is_sitting() is True and vice versa.

Let students do the procedure. If they do it correctly it should finish (conveniently
enough) with everyone seated.

EXPLANATION - 4 MIN

BANANA TALES :

PART ONE

In Python not is a logical operator like and and or. But not only operates on one
condition, not two. Reiterate the point that was made during the activity that not
goes in front of the condition that it is operating on. Then show students this
truth table with the second column blank and discuss with the class how to
complete it. While the table is pretty trivial, this is a good way to underline both
the syntax and semantics of not.

e (CONDITION e not CONDITION
e True e False
e False e True

PLAYTIME - 30 MIN

LOG-IN - 2 MIN
Students should log-in to their accounts as usual.
PLAYTIME (1) - 10 MIN

Look at Challenge 75 together as a class. This challenge adds a complication to
the crocodiles in wells introduced back in the lesson on while loops. Now
sometimes the crocodile’s mouth will be open and must be closed before it is
safe to drive the banana over.

The first two lines are already correct for this challenge. Take a couple of minutes
to walk students through them so they understand how everything fits together.

if not well.crocodile.mouth _closed:
well.crocodile.toggle()

Notice that crocodile is a property of the well object. But crocodile is itself an
object with properties of its own. The mouth_closed property is True if and only if
the crocodile’s mouth is closed. The crocodile object has no mouth_open property
but remember that the not operator reverses a conditional. not
well.crocodile.mouth_closed essentially means “Is the crocodile in the well's
mouth open?” So the whole if statement says “If the crocodile in the well's
mouth is open, toggle it (which will close it).”

Even though the code for the crocodile part is correct for this challenge, students
will still have to fill the well. They can refer back to Challenge 62 if they need a
reminder on how to do that.

PLAYTIME (2) - 18 MIN

Before allowing students to work independently on the remaining challenges in
this section, have them start Challenge 76 by testing the following code:

for well in wells:
well.crocodile.toggle()

Ask students to explain why this code does not solve the challenge. They should
be able to tell you that the problem is calling toggle() for the crocodiles whose

BANANA TALES

PART ONE

mouths are already closed. An if statement is needed to only toggle() the
crocodiles whose mouths are open.

After this quick discussion let students work on Challenges 76 - 78 on their own. If
they have trouble getting started on 76 tell them to look back at the if statement
from Challenge 75.

Challenge 77 might be a little tough. Challenge 64 contains a good model for
how to write a loop that lets you refer to each well and its corresponding
elephant.

The headline for Challenge 78 is an important clue for students. They should first
consider which obstacles need to be removed and then try to write a condition
that applies to those obstacles. If they get stuck first remind them about the not
operator and then get them to list all of the is_SOMETHING() methods that apply
to obstacles (is_ice(), is_box(), etc.)

DEBRIEF - 5 MIN

Have students go back to Challenge 58 and ask them to write a solution that uses
the not operator. This is a good way to check their understanding of the concept.
The following is the simplest possible solution.

for obstacle in obstacles:
if not obstacle.is ice():
dragon.smash(obstacle)
else:
dragon.fire_at(obstacle)

BANANA TALES

PART ONE

LESSON 1) - FUNCTIONS
CSTA STANDARDS

Elementary (3 - 5) Middle (6 - 8) High (9 - 12)

2-AP-T1 3A-AP-14
1B-AP-09

2-AP-12 3A-AP-15
1B-AP-10

2-AP-13 3A-AP-17
1B-AP-11

2-AP-14 3A-AP-23
1B-AP-12

2-AP-16 3B-AP-12
1B-AP-15

2-AP-17 3B-AP-16
1B-AP-17

2-AP-19 3B-AP-21

OBJECTIVES

e Write functions to solve multiple similar problems without duplicating code
¢ Complete Challenges 79 - 87

COMPONENTS

PYTHON

e def keyword and function definition

INTRODUCTION = 5 MIN

DISCUSSION - 5 MIN

Have every student think about a skill or activity that is easy for them now but
that took them a while to learn. Ask them to write down what the activity is and
underneath write down step by step instructions for doing that activity. They
don’t need to be terribly detailed; 4 - 8 steps is sufficient.

BANANA TALES

PART ONE

Let as many students as would like to share their activity and steps. After several
have shared, ask them if they actually have to think about those individual steps
each time they do the activity. Answers may depend on what it is, but most will
probably say no, they “just know"” how to do it now.

Explain that computers can also “learn” new skills in such a way that we don't
have to think about the individual steps each time we use that skill. Of course,
computers don't really learn by practice the way humans do; if we want a
computer to “learn” a new skill we have to give it step by step instructions. But
there is a way to group those instructions together and give them a name so we
don't have to repeat each individual instruction each time. That is what today’s
lesson is about.

PLAYTIME = 35 MIN

LOG-IN - 2 MIN
Students should log-in to their accounts as usual.

PLAYTIME (1) - 5 MIN

Give students a few minutes to work on Challenge 79. As they get started point
out the note about not using a for loop. The elephants and wells here are not part
of a list so a loop won't work.

Let students work the challenge on their own and then move on when everyone
is ready.

EXPLANATION - 6 MIN

Have students look at the code they wrote for Challenge 79. Ask if they think
there is anything wrong with it. If they don’t suggest this on their own, ask what
they think about having to write three separate while loops that all work
essentially the same way. What if there were ten wells that needed to be filled, or
twenty? Writing a separate loop for everyone would be a pain. And while loops
can often be used as a way to avoid duplicating code, sometimes, as in this
challenge, they aren’t an option.

Explain to students that there is another way to avoid duplicating code: Writing
functions. Some functions like print() and range() are already built into Python
to do things like display information on the console and create lists, but we can
make our own functions to do anything we want and then use those functions
over and over.

There are three main things you need to figure out when creating your own
function:

¢ A name for the function. This can be almost anything, but it should be fairly
descriptive of what the function does.
e The parameters (inputs) to the function. Some functions don't take
parameters, but most do so they can be used to solve multiple problems.
— When we use parameters, we allow a function to solve the same
problem but with different values.

BANANA TALES !

PART ONE

e The steps the function needs to do. We still have to write code to solve the
problem, but putting it in a function lets us write that code just once.

Ask students to keep these elements in mind as they tackle the next challenge.

PLAYTIME (2) - 10 MIN

Look at the starter code for Challenge 80 with your class. There is something new
here - the keyword def. def is the Python instruction that creates a new function.

The word following def is the name of the function. In this case it is fill _well,
which seems like a sensible name for a function that fills a well.

It is good to work with a standard convention for naming functions. In Python we
use the convention that function names are all lower case and if there are
multiple words they are separated by underscores.

In parentheses following the function name are the parameters. These are
variable names that can be used in the steps below to refer to the inputs to the
function. When there is more than one, the parameters are separated by
commas. The fill well() function needs to know what well is being filled and
what elephant is doing the filling, so those are the parameters here. When the
function is actually called, each parameter will be given the value of the
corresponding argument.

The def line ends with a colon. Below that are the lines that actually make up the
function body, the Python instructions that actually solve the problem the
function is intended for. As usual, all of the lines of code that are part of the
function definition are indented.

Once students have finished studying the function definition have them run their
code. The first two elephants should fill their wells, which is great but doesn'’t
quite solve the challenge. Point out that the fill well() function is only called
twice (on lines 10 and 11). The students need to add two more calls to fill well()
to complete the challenge. Remind them they can mouse over objects in the play
area to see their names; this will help match up the right elephant with the right
well.

Playtime (3) - 12 min

Now students need to work to complete Challenges 81 - 87 on their own. Most of
these challenges are based on writing and using a fill_well() function.

e Challenge 81 Is a lot like 80 except the given function definition for
fill well() is not complete. Students will need to complete it and then
make sure it Is called with the right arguments for each elephant and well.

e Challenge 82 students to write the fill well() function from scratch; the
rest of the code is already correct.

e In Challenge 83 students have to write the definition of fill _well() and the
function calls to use it. The correct arguments will depend on which elephant
they drag to which ledge.

e Challenge 84 introduces crocodiles with open mouths. If students need to
review how to close a crocodile's mouth have them look back at Challenge

BANANA TALES

PART ONE

75. This challenge also puts the elephants and wells into lists so students will
need to use list notation to refer to them.

Challenge 85 is an assessment challenge that uses all of the skills from this
lesson.

Challenges 86 and 87 ask students to apply the concept of functions in a new
context. For these challenges student will need to write a function that takes
an obstacle as an argument uses if/else statements to make the dragon
destroy it the right way. For both of these challenges all the students have to
do is complete the function definition.

DEBRIEF - 5 MIN

Ask students why functions are a useful programming tool. Let students’ ideas
guide the discussion as much as possible, but try to hit each of the following
points:

Functions make it easier to reuse code.
Functions make it easier to break a problem down into sub-problems.

Functions make it easier for multiple programmers to collaborate. One
programmer can work on a function that does a certain job while another
writes code that uses that function.

Regarding the last point, here is a good place to emphasize the importance of
paying attention to the readability of programs. Some students may be tempted
to choose very short names for their functions and parameters to save a little
typing. This is a bad idea because it makes it much harder to read and
understand what the program is doing. Coding is often done in a team
environment, and it is essential that programs be written to communicate with
other people, not just the computer.

)l

BANANA TALES

PART ONE

GREAT JOB!
{OU HAVE COMPLETED BANANATALES PART ONE.

CONTINUE THE COURSE WITH PART TWO! YOU CAN FIND THE
REST OF THE LESSON PLANS AND CLASSROOM SLIDES IN THE
TEACHER RESOURCES MENU ON YOUR HOMEPAGE .

)l

https://app.codemonkey.com/resources/courses/banana_tales_part_2

	Table of Contents
	Copyright © 2023 by CodeMonkey Studios Ltd.
	All rights reserved. This book or any portion thereof
	may not be reproduced or used in any manner whatsoever
	without the express written permission of the publisher
	Getting Started
	Lesson 1 - Introduction
	Lesson 2 - Sequencing
	Lesson 3 - Lists
	Lesson 4 - For Loops
	Lesson 5 - Range
	Lesson 6 - Variables
	Lesson 7 - If
	Lesson 8 - If/Else
	Lesson 9 - While Loops
	Lesson 10 - Boolean Operators 1
	Lesson 11 - Boolean Operators 2
	Lesson 12 - Functions

